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ABSTRACT Spatial analysis of insect counts provides important information about how insect
species respond to the heterogeneity of a given sampling space. Contour mapping is widely used to
visualize spatial pest distribution patterns in anthropogenic environments, and in this study we
outlined recommendations regarding semivariogram analysis of small data sets (N � 50). Second, we
examined how contour maps based upon linear kriging were affected by the spatial structure of the
given data set, as error estimation of contour maps appears to have received little attention in the
entomological domain. We used weekly trap catches of the warehouse beetle, Trogoderma variabile,
and the accuracy assessment was based upon data sets that had either a random spatial structure or
were characterized by asymptotic spatial dependence. Asymptotic spatial dependence (typically
described with a semivariogram analysis) means that trap catches at locations close to each other are
more similar than trap catches at locations further apart. Trap catches were poorly predicted for data
sets with a random spatial structure, while there was a signiÞcant correlation between observed and
predicted trap catches for the spatially rearranged data sets. Therefore, for data sets with a random
spatial structure we recommend visualization of the insect counts as scale-sized dots rather than as
contour maps.
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THE SPATIAL DISTRIBUTION OF an insect species may be
considered a “Þngerprint” of how it responds to the
environmental heterogeneity and patchiness of a
given sampling space. For ecological studies and/or
implementation of control strategies of an insect, it is
often desirable to characterize whether the insect
species is equally abundant throughout theentire sam-
pling space and whether its abundance at sampled
locations seems positively associated with the occur-
rence of certain spatially aggregated environmental
conditions. Contour maps are used to visualize the
spatial distribution pattern of insect trap catches and
environmental conditions (e.g., temperature) and are
popular in both extension and pest control services
and research on spatial insect ecology. These maps
have been used to visualize spatial distribution pat-
terns ofmothpests (Arbogast et al. 1998, 2000a;Camp-
bell et al. 2002) and beetle pests (Arbogast et al. 1998,
2000a, b; Campbell et al. 2002) in stored-product hab-
itats, and such mapping techniques are relevant for
spatial studies of insects in other anthropogenic en-
vironments as well. Contour maps of insect counts
represent a conversion of point observations, typically

spatially referenced insect trap catches, into a con-
tinuous surface, so that insect abundance is estimated
over unsampled locations within the given sampling
space. The conversion of point observations into a
surface is based upon a user-deÞned interpolation
technique, such as inverse distance weighting (Weisz
et al. 1995), linear kriging (Arbogast et al. 1998, Camp-
bell et al. 2002), or radial basis function (Arbogast et
al. 2000a, b). Thus, using such standard interpolation
techniques, the estimated insect abundance at an un-
sampled location is based upon the assumption that
the observed insect abundance at a Þxed number of
locations can be modeled mathematically.

For some data sets, such as temperature patterns
along a gradually increasing altitudinal gradient, it
seems intuitively logical that the temperature at a
point mid-wise between two weather stations will be
close to themean temperature readingsof theweather
stations, because such data have fairly unidirectional
spatial trends. However, simple unidirectional spatial
trends are rarely to be expected in data sets involving
insect counts, so a basic question to pose is how ef-
fectively can insect counts be predicted at points be-
tween locations in which samples are obtained? The
short answer is that it depends on the spatial structure
of the data, and in this studywe intend to demonstrate
how this is important for the development of accurate
contour maps.
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The spatial structure of a data set describes the
varianceof counts atdifferentdistances anddirections
and is typically characterized through semivariogram
analyses (Isaaks and Srivastava 1989, Schotzko and
OÕKeeffe 1989, Rossi et al. 1992, Liebhold et al. 1993,
Armstrong 1998, Brenner et al. 1998). A data set nor-
mally has one of four spatial structures (Schotzko
andOÕKeeffe 1989), and three of these are outlined in
Fig. 1: random or lack of spatial dependence (white
points in Fig. 1),whichmeans that the variance of trap
catches is independent of the geographical distance
between paired trap locations. A data set with a ran-
dom spatial structure (denoted “pure nugget vario-
gram” [Liebhold et al. 1993]) has no spatial compo-
nent, so the sample mean with corresponding
conÞdence levels is an adequate estimate of trap
catches at unsampled locations. Consequently, the
accuracy of any predictions at unsampled locations
dependson thevarianceassociatedwith themean trap
capture at sampled locations. Spatial dependence
(Rossi et al. 1992, Liebhold et al. 1993) or spatial
continuity (Isaaks and Srivastava 1989) means that
trap catches that are close to each other are generally
more similar than catches at locations further apart,
and that this spatial relationship among trap catches
can be modeled mathematically. Spatial dependence
is linear (gray points in Fig. 1) when the variance in
counts increases proportionally with lag distance, or
asymptoticwhen the varianceof counts levels off after
a certain lag distance (black points in Fig. 1). Asymp-
totic spatial dependence is a required assumption for
most interpolation techniques, including kriging
methods (Roberts et al. 1993, Perry 1997). However,
some software packages for developing contourmaps,

such as Surfer 7.02 for Windows (Golden Software,
Golden, CO), can be used without a priori character-
ization of the spatial structure.

In this study, we outline recommendations regard-
ing semivariogram analysis of small data sets (N � 50),
and we determine the accuracy of contour maps
when data sets have either a random spatial structure
or asymptotic spatial dependence. This study is based
upon pheromone trap catches of the warehouse
beetle, Trogoderma variabile Ballion (Coleoptera:
Dermestidae), in a food warehouse, but the analytical
approach is relevant to contourmapping ofmost small
data sets of insect counts. We focused on the use of
linear kriging as interpolation technique, as this tech-
nique is considered “BLUE” (best linear unbiased es-
timator) (Isaaks and Srivastava 1989). We discuss the
importance of characterizing the spatial structure of a
data set before using contour mapping as a decision
support tool in integrated pest management (IPM).
We also propose an alternative mapping technique
when contour mapping is not appropriate.

Materials and Methods

The Sampling Space and Traps.This studywas con-
ducted in a 106 � 61-m (6,466 m2) portion of a food
warehouse, which is described in more detail by
Campbell et al. (2002). Pheromone trapping was con-
ducted over consecutive 9 wk (10 May to 12 July
2000),which are referred to in this study aswk 1Ð9.All
pheromone-baited trapswere serviced the samedayat
weekly intervals, and two types of traps were placed
at each of the 37 locations; a FLITe-TRAK beetle trap
(Mullen 1992) was placed on the ßoor below a Phero-
con II trap (Trécé, Salinas, CA), which either hung on
walls or from pillars from 1.5Ð2.1 m above the ware-
house ßoor. The FLITe-TRAK trap has a ramp-and-
pitfall design and ismainly used for capture ofwalking
insects, while the Pherocon II trap is a simple dia-
mond-shaped sticky trap intended to capture ßying
insects. Both trap typeswere baitedwith three rubber
septa, each impregnatedwith synthetic pheromone of
T. variabile, Tribolium spp. (Coleoptera: Tenebrion-
idae), and Lasioderma serricorne (Fabricius) (Co-
leoptera: Anobiidae). FLITe-TRAK traps also con-
tained a commercial blend of food oils as attractant
(Trécé). Pheromone lures and food attractants were
producedbyTrécé, and theywere replacedafter 8wk.
As the purpose of this study was to describe the ac-
curacy of contour maps and importance of analyzing
the spatial structure of data sets before developing
contour maps, we only examined trap catches of
T. variabile.Weanalyzed thecorrelationbetween trap
catches of T. variabile with the two trap types before
proceeding with the spatial analysis. Trap locations
were georeferenced according to the distance in
meters from a reference point in the southwestern
corner of the food warehouse.

TheoreticalBackground to SemivariogramAnalysis
of Small Data Sets. The spatial structure of a data set
is determined by Þtting regression lines to the points
in the semivariogram (Fig. 1) (e.g., Young and Young

Fig. 1. Three theoretical semivariograms illustrating the
general relationships between lag distance of paired obser-
vations andvarianceof counts:whitedots represent adata set
with lack of spatial dependence (random spatial structure),
gray dots represent a data set with positively linear spatial
dependence, and black dots represent a data set with an
asymptotic spatial dependence. The three main require-
ments for development of a meaningful semivariogram anal-
ysis are presented in boxes.
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1998). Several authors have outlined minimum re-
quirements regarding the size of data sets to obtain a
meaningful semivariogram analysis (Journel and
Huijbregts 1978, Liebhold et al. 1993), and with the
increasing use of contour mapping in spatial ecology
studies of stored-product pests and other small-scale
systems, it becomes highly relevant to outline stan-
dards for spatial structure analysis for small data sets
to be visualized as contour maps. The total number of
paired trap catches (P) for a given data set is:

P �
n � (n � 1)

2
[1]

where “n” is the number of trap catches. As in any
other type of regression analysis, the reliability of the
curve Þt increases proportionally with the number of
points in the semivariogram. Thus, the semivariogram
must contain enough points to characterize the spatial
structure, and each point must be calculated on the
basis of aminimumnumber of paired observations. To
determine whether the spatial dependence in a data
set is random, linear, or asymptotic (see Fig. 1), it
seems reasonable to suggest that minimum of four
points is required in the semivariogram. The number
of points in the semivariogram is user deÞned and
determined by the width of the lag-distance intervals.
Narrowing the lag-distance intervals increases the
number of points, but reduces the number of paired
observations used to calculate each point in the semi-
variogram. According to Liebhold et al. (1993), there
areat least tworequirements tobeable tocharacterize
the spatial structure of a data set using semivariogram
analysis: 1) each point must represent the average of
at least 30Ð50 pairs of observations to minimize the
inßuence of extreme variance values, and 2) a semi-
variogram analysis should not account for more than
about half of the sampling space in any direction (that
is why it is called a “semi”-variogram), otherwise the
semivariogrammaybecomedirectionallybiasedwhen
data sets are obtained from sampling spaces with
highly unequal dimensions. For example, if a food
warehouse is 50 m long and 20 m wide, and the semi-
variogram is based upon 5-m lag-distance intervals up
to 30 m, then the longest lag-distance intervals will
only include paired observations in one direction.
Thus for the theoretical warehouse, the second re-
quirement by Liebhold et al. (1993) suggests that the
semivariogram should not account for observations
that are �10 m apart. The number of paired observa-
tions included in the semivariogram analysis therefore
is inßuenced by a combination of trap catch density,
the physical shape of the sampling space, and the
pattern of trap placement.

A semivariogram analysis also can be used to detect
directionality or anisotropy in data sets. Isotropy
means that the level of spatial dependence is de-
scribed purely by the distance between the paired
observations and is similar in all directions, while in
anisotropicdata sets spatial dependence isdetermined
by a combination of angle and distance between ob-
servations (Armstrong 1998, Krajewski and Gibbs

2001).Although includingdirectionality into the semi-
variogram analysis may improve the characterization
of the spatial structure, it imposes a considerable re-
striction on the number of paired observations in-
cluded in the semivariogram, because it means that
only paired observations within a given angle are in-
cluded. Therefore, it is not recommended to include
directionality into the semivariogram analysis when
the data set is small.

Semivariogram Analysis. In this study, the food
warehouse was 106 � 61 m, which means that ideally
the semivariogram should not account for �30.5 m.
With the current placement of traps and when no
traps were lost, an initial analysis of the number of
paired observations showed that using a maximum lag
distance of 30.5 m would include 134 paired observa-
tions in the semivariogram analysis, while extending
the maximum lag distance to 34.15 m meant that 205
paired observations were included. Although a max-
imum lag distance of 34.15 m is slightly longer than
half the shortest dimension, we found this modiÞca-
tion acceptable as it allowed us to generate semivar-
iograms with, on average, Þve points of �40 pairs
compared with only four points of �35 pairs. Accord-
ing to the recommendation by Krajewski and Gibbs
(2001) and similar to Sharov et al. (1996), absolute
pheromone trap catches of T. variabile were log10 (x
� 1) transformed before conducting the semivario-
gram analysis. We used the OUTPAIR option in the
PROC VARIOGRAM procedure in PC-SAS 8.0 (SAS
Institute 2000) to calculate lag-distance interval and
variance of all paired observations within a 34.15-m
range. To obtain similar numbers of paired observa-
tions in each lag-distance interval (35Ð45 paired ob-
servations), we calculated the mean variance of trap
catches for the paired observations when divided into
the following lag-distance intervals: �15.40 m, �15.40
and �21.59 m, �21.59 and �30.14 m, �30.14 and
�31.00 m, �31.00 and �34.15 m. The PROC NLIN
procedure in SAS 8.00 (SAS Institute 2000) was used
to Þt a spherical curve (Schotzko and OÕKeeffe 1989)
to the mean variance (�[h]) of the Þve lag-distance
intervals:

�(h) � b � c � �1.5(h)a
�

0.5(h)3

a � [2]

where “b” is the intercept with the y-axis (the “nug-
get”), “c” is the “sill,” “h” is the mean lag distance, and
“a” is the “range,”which is the lagdistanceatwhich the
variance reaches the sill (Liebhold et al. 1993, Brenner
et al. 1998). Paired observations further apart than the
distance indicated by the range are not spatially au-
tocorrelated.

Spatial Rearrangement of Weekly Trap Catches.
Based upon semivariogram analyses, we determined
that all nineweeklydata sets of actual Pherocon II trap
catches of T. variabile had random spatial structures.
Subsequently, we manipulated the weekly trap catch
data sets selected from wk 1, 4, and 7 by spatially
rearranging the trap catches to create signiÞcant as-
ymptotic spatial dependences. The trap catches were
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spatially rearranged by moving trap catch counts
among the same trap locations without changing the
weekly trap catch totals or frequency distribution of
trap catches. The Pherocon II trap catches from wk 1,
4, and 7 were used for the validation because: 1) no
traps were lost during thoseweeks, 2) theweeks were
all separated in time, and 3) these trapping periods
represented three different relative magnitudes of
weekly mean trap catches.

Mapping and Accuracy Assessment of Contour
Maps of T. variabile Trap Catches. The software pack-
age PC-Surfer 7.02 (Golden Software) was used to
develop contour maps of the T. variabile trap catches.
Similar to Arbogast et al. (1998) and Campbell et al.
(2002), we used the software default settings for “lin-
ear kriging” with assumptions of “zero nugget” and
“isotropy.” Wewanted to use a technique for accuracy
assessment that requires little time and is easy to per-
form, so we used the “jackknife” procedure described
by Krajewski and Gibbs (2001) in which one trap
catch was removed from the data set before the con-
tour mapping, and the estimated catch from the con-
tour map at that location was compared with the
observed trap catch. This procedure was repeated 20
times by individually removing 10 of the lowest trap
catches and10of thehighest trapcatches for eachdata
set to determine howwell the contourmaps predicted
both high and low trap catches.Weonly examined the
predictions of the 10 highest and the 10 lowest trap
catches as the type of spatial structure of the data set
that was believed to have the highest inßuence on the
predictions of extreme trap catches. For all data sets,
the relationship between observed and predicted
trap catches was analyzed with a linear regression
analysis.

Results and Discussion

Trap Catches. Of the 333 possible weekly trap
catches (9 wk � 37 trap locations), 7 Pherocon II trap
catches and 98 FLITe-TRAK trap catches were lost
(Table 1). Despite the considerable loss of FLITe-
TRAK traps, a paired t-test showed that FLITe-TRAK
trap catches of T. variabile were signiÞcantly higher

than thosewithPherocon II traps (Table 1, t8 �10.297,
P � 0.001). A similar difference in magnitude of trap
catches was reported by Campbell et al. (2002). We
have no clear explanation for the signiÞcantly higher
catches of T. variabile on the ßoor compared with the
air, but it emphasizes theneed for analyzing the spatial
distribution pattern of such insect trap catches in a
three-dimensional context rather than only analyzing
trap catches in a two-dimensional plane. Despite the
signiÞcant difference in magnitude of catches, a re-
gression analysis showed that trap catches with the
two trapswere signiÞcantly correlated (adjustedR2 �
0.22, F232 � 67.13,P � 0.001). As concluded fromother
studies involving simultaneous trapping with several
trap types (e.g., Nansen et al. 2003), a trap catch is
relative to the type of trap that was used, so catches
withdifferent trap types arenoteasily comparable and
may therefore indicate different spatial distribution
patterns.

Loss of pheromone traps represents a frequently
occurring problem in monitoring programs, and it has
profound implications for the development of mean-
ingful semivariograms. For instance, in the present
case with a maximum lag distance of 34.15 m, 37 trap
catches equaled 205 paired observations, while 34 trap
catches (loss of three Pherocon II traps) in wk 3
equaled 169 paired observations. Hence, with each
point in the semivariogram representing �40 paired
observations, the semivariogram analysis of Pherocon
II trap catches from wk 3 was only based upon four
points compared with Þve for the other weekly data
sets. Journel and Huijbregts (1978) recommended
that at least 30 observations be included in a data set
to obtain a meaningful semivariogram analysis. Be-
cause of the considerable loss of FLITe-TRAK traps,
the spatial structure of weekly T. variabile catches
with these traps was not analyzed.

Spatial Randomness.Table 2 summarizes the results
from the semivariogram analyses of the nine weekly
data sets ofT. variabile catcheswith Pherocon II traps.
The Þt of equation 2 to the relationship between lag
distance and trap catch variance was found to be
nonsigniÞcant for the 9 wk of actual trap catches (P �
0.05), and this relationship suggests that the weekly

Table 1. Weekly pheromone trap catches of T. variabile with FLITe-TRAK traps and Pherocon II traps in a food warehouse during
9 wk from 10 May to 12 July 2000

Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7 Wk 8 Wk 9 Mean (SE)

FLITe-TRAK

Zero catchesa 10 4 0 3 2 5 3 1 2
Maximumb 15 32 16 32 17 16 20 18 42
Meanb 2.32 (0.58) 5.08 (1.32) 5.65 (0.87) 6.36 (1.20) 4.86 (0.84) 4.24 (0.87) 5.00 (0.97) 4.23 (0.98) 8.13 (1.97) 5.1 (0.5)
Sitesc 31 26 26 28 29 25 24 22 22 26.11 (1.0)

Pherocon II

Zero catchesa 19 11 7 9 11 8 13 13 5
Maximumb 5 16 12 11 10 8 13 5 13
Meanb 0.86 (0.20) 2.51 (0.52) 3.06 (0.54) 1.95 (0.42) 2.14 (0.42) 1.86 (0.30) 2.49 (0.50) 1.46 (0.25) 3.85 (0.60) 2.24 (0.3)
Sitesc 37 37 34 37 37 36 37 36 35 36.22 (0.4)

a Number of traps per week with zero catches of T. variabile.
b Weeklymaximumandmean (with corresponding standard error) ofT. variabile trap catcheswithFLITe-TRAK traps andPherocon II traps.
c Number of trap catches obtained (37 traps were installed each week).
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trap catch data sets had a random spatial structure. It
is possible that an asymptotic spatial dependence
would have been detected if we had been able to take
directionality (anisotropy) into account in the semi-
variogram analysis. Alternatively, stratiÞed sampling
approaches could be suggested to eliminate the di-
rectionality. However, because of the small size of
these data sets, the development of separate semiva-
riograms for different directions or any grouping of

trap locations (as part of a stratiÞed sampling ap-
proach) would have reduced the number of paired
observations substantially and therefore not allowed
us todevelopmeaningful semivariogramanalyses. The
trap density had to be at least twice as high to incor-
porate directionality into the semivariogram analyses.
Table 2 also shows the results from the semivariogram
analysesof the three spatially rearrangeddata sets, and
there we obtained a highly signiÞcant Þt of equation

Fig. 2. Regression analyses of the relationship between observed and predicted T. variabile trap catches from wk 1, 4,
and 7 for actual trap catches and spatially rearranged trap catches.

Table 2. Mean variance among Pherocon II trap catches of T. variabile at given lag-distance intervals

Mean lag distance (m)a Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7 Wk 8 Wk 9

Observed Pherocon II trap catches

15.0 0.560 0.720 0.775 0.654 0.934 0.689 1.039 0.700 0.966
18.6 0.567 0.670 0.578 0.539 0.644 0.689 0.906 0.636 0.941
23.2 0.488 0.789 0.751 0.476 0.716 0.578 0.900 0.555 0.793
30.5 0.587 0.858 0.849 0.660 0.749 0.675 0.892 0.654 0.870
33.5 0.708 0.800 0.822 0.635 0.913 0.666 0.904 0.652 0.965

Regression (F value) 8.85 2.08 �0.18 1.76 2.86 0.98 5.11 2.80 4.36
Regression (P value) 0.10 0.32 0.36 0.26 0.51 0.16 0.26 0.19

Spatially rearranged Pherocon II trap catches

15.0 0.373 0.531 0.561
18.6 0.450 0.620 0.737
23.2 0.551 0.737 0.855
30.5 0.581 0.848 0.942
33.5 0.599 0.797 0.970

Regression (F value) 68.80 55.27 87.59
Regression (P value) 0.01 0.03 �0.01
Range (“a”) 31.05 30.91 31.53
Nugget (“b”) �0.082 �0.10 �0.19
Sill (“c”) 0.68 0.92 1.15

a Mean lag distance of paired observations divided into Þve intervals: �15.40 m, �15.40 and �21.59 m, �21.59 and �30.14 m, �30.14 and
�31.00 m, �31.00 and �34.15 m. Values in weekly columns represent the mean variance of T. variabile trap catches for the Þve lag-distance
intervals. Trap catches were log10 (x � 1) transformed prior to the semivariogram analysis. A nonlinear curve (equation 1) was Þtted to the
relationship between lag distance and mean variance. A regression analysis was used to evaluate the signiÞcance of the curve Þt, and the F
value and P value from this analysis are presented. Three of the weekly trap catch data sets were spatially rearranged without changing the
weekly trap catchmean or frequency distribution. Range (“a”), Nugget (“b”), and Sill (“c”) are coefÞcients in the nonlinear curve Þt (equation
2).
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2 to the relationship between lag distance and trap
catch variance, which indicated spatial dependence
of trap catches.

Spatial Structure of Pheromone-BaitedTrapCatches.
Perry (1997) cautions about applying geostatistical
techniques to certain ecological data sets, because
thesemethods were developed for spatial research on
physical (essentially immobile) variables and not for
data sets of mobile organisms. There are at least Þve
possible explanations for the lack of spatial asymptotic
dependence in the T. variabile trap catches: 1) the
movement pattern of the T. variabile population may
have been biased by directionality because of, for
instance, predominant directional ßight relative to air
currents or light regimes, which were not accounted
for; 2) the pheromone-baited traps may have been
unequally affected by the environmental heterogene-
ity of thewarehouse, so adjacent pheromone trap sites
may have caught the beetles with different efÞciency;
3) the number of pheromone-baited traps may not
have been sufÞciently high to fully characterize the
spatial distribution pattern of the T. variabile trap
catches; 4) the trap catch range (mainly determined
by the pheromone concentration in the lure) may
have been too high, so that ßying T. variabile males
were confused, as it occurs under augmentative re-
leases of pheromone in mating disruption, and there-
fore T. variabile males were caught in a random pat-
tern within the sampling space; or 5) the human
activity in the food warehouse caused so much per-
sistentdisturbance that theT. variabilepopulationwas
ßying in a spatially random pattern. It was beyond the
scope of this study to investigate reasons for the ob-
served spatial randomness of T. variabile trap catches,
but it raises some concern about the practical use of
pheromone-baited traps, especially for precision tar-
geting and monitoring of T. variabile populations in
food facilities.

Validation of Contour Maps. In wk 1, 4, and 7,
there were 9Ð19 trap catches of zero T. variabile in-
dividuals (Table 1), and validating the accuracy of
contour map predictions on these locations is impor-
tant to estimate the level of type 2 (e.g., Green 1979)
associated with each contour map. For the three data
sets of actual trap catches, the predictions of low trap
catches were generally higher than the predictions of
high trapcatches (Fig. 2), and inwk7asmuchas seven
T. variabile individuals were predicted for a location

where no beetles were caught. Hence, the regression
analyses of the relationship between observed and
predicted for the 10 low and 10 high trap catches for
the 3 wk were found to be nonsigniÞcant (P � 0.05).
In wk 7, there was even a signiÞcantly negative cor-
relation between observed and predicted trap catches
(Table 3). However, for the spatially rearranged trap
catches, the predictions of low trap catches were very
close to observed for all 3 wk. A type 1 error, false
negative, is generally the most concerning type of
error inmodel hypothesis testing (Green 1979). Inwk
1, 4, and 7, the highest trap catches were 5, 11, and 13
T. variabile individuals, respectively. For the three
weekly data sets of actual trap catches, there were
several predictions of high trap catches thatwere very
close to zero, while the predictions of high trap
catches for the spatially rearranged data sets were all
signiÞcantly correlated with the observed (Table 3).

Similar to Campbell et al. (2002) andArbogast et al.
(1998), we used linear kriging for the interpolation
procedure in the contour mapping, but “radial basis
function” has also been used for contour mapping of
stored-product insects (Arbogast et al. 2000a, b). For
comparison, we therefore used actual trap catches
from wk 7 to validate contour maps based on radial
basis functionand found that the relationshipbetween
observed and predicted trap catches was almost iden-
tical to the results from the linear kriging (a � �0.200,
Y0 � 2.801, adjusted R2 � 0.283, F19 � 8.8485, P �
0.009). The fairly inaccurate trap catch predictions
from contour maps of the actual trap catches are
caused directly by the random spatial structure of
these data sets, and thus the spatial structure of the
data set is more important than the choice of inter-
polation procedure.

Visualization of Insect Counts. The actual and spa-
tially rearranged Pherocon II trap catches used for
the validation are presented as contour maps based
upon linear kriging in Fig. 3. The three maps of actual
T. variabile trap catches showed a fairly patchy scat-
tering of high and lowcatches,whichexplainswhy the
semivariogram analyses indicated a random spatial
structure for these data sets. Because of the random
spatial structure of the actual T. variabile trap catches,
the sizes and shapes of the polygons have nomeaning,
and a more appropriate visualization would be to
present the trap catches as scale-sized dots (Fig. 4).
The visualization of insect counts as scale-sized or

Table 3. Results from the regression analyses of observed and predicted T. variabile trap catches for actual trap catch data that had
a random spatial structure and spatially rearranged trap catches with asymptotic spatial dependence

Data set Type df adj. R2 F P a Y0

Wk 1 Actual 19 0.002 1.03 0.323 �0.062 0.77
Wk 1 Rearranged 19 0.438 15.78 �0.001 0.363 0.34
Wk 4 Actual 19 0.065 2.31 0.146 0.152 1.71
Wk 4 Rearranged 19 0.499 19.96 �0.001 0.285 0.674
Wk 7 Actual 19 0.287 8.64 0.009 �0.206 2.77
Wk 7 Rearranged 19 0.536 22.98 �0.001 0.382 0.758

As validation of actual and spatially rearranged trap catches, 10 of the lowest and 10 of the highest trap catches were removed individually
from each data set, and linear kriging was used to generate contour maps. The predicted trap catch on the contour maps for each of the 20
individually removed trap catches was compared with the observed trap catch and analyzed with a regression analysis (Fig. 2).
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color-coded dots involves no mathematical proce-
dures, is totally unbiased, and provides about the same
information as contour maps without making predic-
tions of insect numbers at unsampled locations.

The contour maps of the spatially rearranged
data sets indicated more consistent spatial dis-
tribution patterns with either high or low T. vari-

abile trap catches in different parts of the food
warehouse. The semivariogram analyses of the spa-
tially rearranged T. variabile trap catches indicated
asymptotic spatial dependence within a 30- to 32-m
range, which was close to the maximum range of
the semivariogram analysis (34.15 m). With spatial
dependence of �30 m, the overall distance of �15 m

Fig. 3. Contour maps of pheromone-baited trap catches of T. variabile with Pherocon II traps at the 37 trap locations for
wk 1, 4, and 7. Trap locations are presented as crosshairs. The actual trap catches are presented to the left, and the spatially
rearranged trap catches are presented to the right. Actual trap catches had a random spatial structure, while the spatially
rearranged trap catches were manipulated so that the trap catches showed asymptotic spatial dependence (Table 2).
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between trap locations may not be a high enough
density of traps, and this may at least partially
explain the random spatial structure of the actual trap
catches.

Conclusion

We outlined the basic requirements for semivario-
gram analysis of small data sets. Our analysis demon-
strated that it is necessary to consider the spatial struc-
ture of a data set before developing contour maps,
because trap catches at unsampled locations were not
predicted accurately when the data set has a random
spatial structure. Arbogast et al. (1998) considered
the development of contour maps a three-step pro-

cess: 1) posting of data points on a map, 2) interpo-
lation, and 3) establishment of contour lines. We rec-
ommend two additional analytical steps. First, analysis
of the data setsÕ spatial structure should be character-
izedbeforedeveloping contourmaps. If the analysis of
the spatial structure of the data sets indicates other
structures than an asymptotic relationship between
lag distance and variance of insect counts, then inter-
polation and subsequent contour mapping should not
be used to visualize the data. To develop ameaningful
semivariogram analysis, we suggest that each point in
the semivariogram represents the mean of at least 30
paired observations, and that the paired observations
are divided into at least Þve lag-distance intervals
within half of the shortest dimensions of the sampling

Fig. 4. Pheromone-baited trap catches of T. variabile with Pherocon II traps at the 37 trap locations for consecutive 9 wk
(10 May to 12 July 2000). The size of the circles represents the magnitude of trap catches.
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space. Second, before generating the Þnal contour
map,we recommend an accuracy assessment inwhich
some high and low trap catches are removed individ-
ually from the data set before the contour mapping,
and the predicted catch from the contour map at that
location is compared with the observed. The relation-
ship betweenobserved andpredicted trap catches can
subsequently be analyzed in a regression analysis.
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